Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 167: 425-435, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321528

RESUMO

Regenerative therapeutics for treating peripheral arterial disease are an appealing strategy for creating more durable solutions for limb ischemia. In this work, we performed preclinical testing of an injectable formulation of syndecan-4 proteoliposomes combined with growth factors as treatment for peripheral ischemia delivered in an alginate hydrogel. We tested this therapy in an advanced model of hindlimb ischemia in rabbits with diabetes and hyperlipidemia. Our studies demonstrate enhancement in vascularity and new blood vessel growth with treatment with syndecan-4 proteoliposomes in combination with FGF-2 or FGF-2/PDGF-BB. The effects of the treatments were particularly effective in enhancing vascularity in the lower limb with a 2-4 increase in blood vessels in the treatment group in comparison to the control group. In addition, we demonstrate that the syndecan-4 proteoliposomes have stability for at least 28 days when stored at 4°C to allow transport and use in the hospital environment. In addition, we performed toxicity studies in the mice and found no toxic effects even when injected at high concentration. Overall, our studies support that syndecan-4 proteoliposomes markedly enhance the therapeutic potential of growth factors in the context of disease and may be promising therapeutics for inducing vascular regeneration in peripheral ischemia. STATEMENT OF SIGNIFICANCE: Peripheral ischemia is a common condition in which there is a lack of blood flow to the lower limbs. This condition can lead to pain while walking and, in severe cases, critical limb ischemia and limb loss. In this study, we demonstrate the safety and efficacy of a novel injectable therapy for enhancing revascularization in peripheral ischemia using an advanced large animal model of peripheral vascular disease using rabbits with hyperlipidemia and diabetes.


Assuntos
Hiperlipidemias , Doenças Vasculares Periféricas , Coelhos , Camundongos , Animais , Sindecana-4/farmacologia , Sindecana-4/uso terapêutico , Fator 2 de Crescimento de Fibroblastos , Neovascularização Fisiológica , Isquemia/terapia , Membro Posterior/irrigação sanguínea , Modelos Animais de Doenças
2.
Biomaterials ; 275: 120924, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147716

RESUMO

One in 190 Americans is currently living with the loss of a limb resulted from injury, amputation, or neurodegenerative disease. Advanced neuroprosthetic devices combine peripheral neural interfaces with sophisticated prosthetics and hold great potential for the rehabilitation of impaired motor and sensory functions. While robotic prosthetics have advanced very rapidly, peripheral neural interfaces have long been limited by the capability of interfacing with the peripheral nervous system. In this work, we developed a hyperflexible regenerative sieve electrode to serve as a peripheral neural interface. We examined tissue neurovascular integration through this novel device. We demonstrated that we could enhance the neurovascular invasion through the device with directional growth factor delivery. Furthermore, we demonstrated that we could reduce the tissue reaction to the device often seen in peripheral neural interfaces. Finally, we show that we can create a stable tissue device interface in a long-term implantation that does not impede the normal regenerative processes of the nerve. Our study developed an optimal platform for the continued development of hyperflexible sieve electrode peripheral neural interfaces.


Assuntos
Membros Artificiais , Doenças Neurodegenerativas , Eletrodos Implantados , Humanos , Regeneração Nervosa , Nervos Periféricos
3.
Sci Rep ; 11(1): 9838, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972619

RESUMO

Physical activity has been consistently linked to decreased incidence of breast cancer and a substantial increase in the length of survival of patients with breast cancer. However, the understanding of how applied physical forces directly regulate breast cancer remains limited. We investigated the role of mechanical forces in altering the chemoresistance, proliferation and metastasis of breast cancer cells. We found that applied mechanical tension can dramatically alter gene expression in breast cancer cells, leading to decreased proliferation, increased resistance to chemotherapeutic treatment and enhanced adhesion to inflamed endothelial cells and collagen I under fluidic shear stress. A mechanistic analysis of the pathways involved in these effects supported a complex signaling network that included Abl1, Lck, Jak2 and PI3K to regulate pro-survival signaling and enhancement of adhesion under flow. Studies using mouse xenograft models demonstrated reduced proliferation of breast cancer cells with orthotopic implantation and increased metastasis to the skull when the cancer cells were treated with mechanical load. Using high throughput mechanobiological screens we identified pathways that could be targeted to reduce the effects of load on metastasis and found that the effects of mechanical load on bone colonization could be reduced through treatment with a PI3Kγ inhibitor.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Mama/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Estresse Mecânico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fenômenos Biomecânicos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Microtomografia por Raio-X , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nat Biomed Eng ; 5(1): 89-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33483713

RESUMO

Using endogenous mesenchymal stem cells for treating myocardial infarction and other cardiovascular conditions typically results in poor efficacy, in part owing to the heterogeneity of the harvested cells and of the patient responses. Here, by means of high-throughput screening of the combinatorial space of mechanical-strain level and of the presence of particular kinase inhibitors, we show that human mesenchymal stem cells can be mechanically and pharmacologically conditioned to enhance vascular regeneration in vivo. Mesenchymal stem cells conditioned to increase the activation of signalling pathways mediated by Smad2/3 (mothers against decapentaplegic homolog 2/3) and YAP (Yes-associated protein) expressed markers that are associated with pericytes and endothelial cells, displayed increased angiogenic activity in vitro, and enhanced the formation of vasculature in mice after subcutaneous implantation and after implantation in ischaemic hindlimbs. These effects were mediated by the crosstalk of endothelial-growth-factor receptors, transforming-growth-factor-beta receptor type 1 and vascular-endothelial-growth-factor receptor 2. Mechanical and pharmacological conditioning can significantly enhance the regenerative properties of mesenchymal stem cells.


Assuntos
Fenômenos Biomecânicos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica/fisiologia , Regeneração/fisiologia , Adulto , Animais , Feminino , Humanos , Isquemia , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Adulto Jovem
5.
Biotechniques ; 69(6): 443-449, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33108897

RESUMO

The quantitative analysis of blood vessel networks is an important component in many animal models of disease. We describe a nondestructive technique for blood vessel imaging that visualizes in situ vasculature in harvested tissues. The method allows for further analysis of the same tissues with histology and other methods that can be performed on fixed tissue. Consequently, it can easily be incorporated upstream to analysis methods to augment these with a three-dimensional reconstruction of the vascular network in the tissues to be analyzed. The method combines iodine-enhanced micro-computed tomography with a deep learning algorithm to segment vasculature within tissues. The procedure is relatively simple and can provide insight into complex changes in the vascular structure in the tissues.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Imageamento Tridimensional/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Coração/diagnóstico por imagem , Iodo/química , Masculino , Redes Neurais de Computação , Nervos Periféricos/irrigação sanguínea , Nervos Periféricos/diagnóstico por imagem , Ratos Sprague-Dawley , Coloração e Rotulagem , Microtomografia por Raio-X
6.
Integr Biol (Camb) ; 12(1): 1-11, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-31965190

RESUMO

Tumor-initiating cells (TICs), a subpopulation of cancerous cells with high tumorigenic potential and stem-cell-like properties, drive tumor progression and are resistant to conventional therapies. Identification and isolation of TICs are limited by their low frequency and lack of robust markers. Here, we characterize the heterogeneous adhesive properties of a panel of human and murine cancer cells and demonstrate differences in adhesion strength among cells, which exhibit TIC properties and those that do not. These differences in adhesion strength were exploited to rapidly (~10 min) and efficiently isolate cancerous cells with increased tumorigenic potential in a label-free manner by use of a microfluidic technology. Isolated murine and human cancer cells gave rise to larger tumors with increased growth rate and higher frequency in both immunocompetent and immunocompromised mice, respectively. This rapid and label-free TIC isolation technology has the potential to be a valuable tool for facilitating research into TIC biology and the development of more efficient diagnostics and cancer therapies.


Assuntos
Carcinogênese/patologia , Adesão Celular , Separação Celular/métodos , Hidrodinâmica , Neoplasias/fisiopatologia , Células-Tronco Neoplásicas/patologia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Microfluídica , Transdução de Sinais , Estresse Mecânico
7.
Adv Drug Deliv Rev ; 146: 97-125, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30267742

RESUMO

The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neovascularização Patológica/terapia , Cicatrização , Animais , Sistemas de Liberação de Medicamentos , Humanos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...